These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: computer simulation and metabolic control analysis. Author: Mulquiney PJ, Kuchel PW. Journal: Biochem J; 1999 Sep 15; 342 Pt 3(Pt 3):597-604. PubMed ID: 10477270. Abstract: This is the third of three papers [see also Mulquiney, Bubb and Kuchel (1999) Biochem. J. 342, 565-578; Mulquiney and Kuchel (1999) Biochem. J. 342, 579-594] for which the general goal was to explain the regulation and control of 2,3-bisphosphoglycerate (2,3-BPG) metabolism in human erythrocytes. 2,3-BPG is a major modulator of haemoglobin oxygen affinity and hence is vital in blood oxygen transport. A detailed mathematical model of erythrocyte metabolism was presented in the first two papers. The model was refined through an iterative loop of experiment and simulation and it was used to predict outcomes that are consistent with the metabolic behaviour of the erythrocyte under a wide variety of experimental and physiological conditions. For the present paper, the model was examined using computer simulation and Metabolic Control Analysis. The analysis yielded several new insights into the regulation and control of 2,3-BPG metabolism. Specifically it was found that: (1) the feedback inhibition of hexokinase and phosphofructokinase by 2, 3-BPG are equally as important as the product inhibition of 2,3-BPG synthase in controlling the normal in vivo steady-state concentration of 2,3-BPG; (2) H(+) and oxygen are effective regulators of 2,3-BPG concentration and that increases in 2,3-BPG concentrations are achieved with only small changes in glycolytic rate; (3) these two effectors exert most of their influence through hexokinase and phosphofructokinase; (4) flux through the 2,3-BPG shunt changes in absolute terms in response to different energy demands placed on the cell. This response of the 2,3-BPG shunt contributes an [ATP]-stabilizing effect. A 'cost' of this is that 2, 3-BPG concentrations are very sensitive to the energy demand of the cell and; (5) the flux through the 2,3-BPG shunt does not change in response to different non-glycolytic demands for NADH.[Abstract] [Full Text] [Related] [New Search]