These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Measurement of action potential-induced presynaptic calcium domains at a cultured neuromuscular junction. Author: DiGregorio DA, Peskoff A, Vergara JL. Journal: J Neurosci; 1999 Sep 15; 19(18):7846-59. PubMed ID: 10479687. Abstract: Spatially localized Ca(2+) domains are thought to play a key role in action potential (AP)-evoked neurotransmitter release at fast synapses. We used a stage-scan confocal spot-detection method and the low-affinity Ca(2+) indicator Oregon Green 488 BAPTA-5N to study the spatiotemporal profile of presynaptic AP-induced Ca(2+) domains. Families of scanned AP-induced fluorescence transients were detected from spot locations separated by 200-300 nm, within the vicinity of Ca(2+) entry sites. Typically, the largest transient in a particular scan peaked within approximately 1 msec and decayed with rapid (tau(1) of 1.7 msec) and slow components (tau(2) of 16 msec, tau(3) of 78 msec). As the spot was incrementally displaced, transients progressively exhibited a slowing in their time-to-peak and a loss of the fast decay component. Three-dimensional graphs of fluorescence versus time and spot displacement revealed the presence of AP-induced fluorescence domains that dissipated within approximately 7 msec. The size of fluorescence domains were estimated from the full-width at half-maximum of gaussian fits to isochronal DeltaF/F plots and ranged from 0.6 to 3.0 micrometer, with a mean +/- SD of 1.6 +/- 0.6 micrometer. Model simulations of a localized Ca(2+) entry site predicted the major features of the fluorescence transients and suggested that, within approximately 1 msec of the initiation of the Ca(2+) current, both the fluorescence domain and the underlying Ca(2+) domain do not extend significantly beyond the site of entry. Consistent with this prediction, the intracellular addition of EGTA (up to 2 mM) accelerated the decay of the measured transients but did not affect the domain size.[Abstract] [Full Text] [Related] [New Search]