These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: End-to-side neurorrhaphy: evaluation of axonal response and upregulation of IGF-I and IGF-II in a non-injury model.
    Author: Fortes WM, Noah EM, Liuzzi FJ, Terzis JK.
    Journal: J Reconstr Microsurg; 1999 Aug; 15(6):449-57. PubMed ID: 10480566.
    Abstract:
    This research group has introduced a model of end-to-side neurorrhaphy, in which reinnervation occurs without frank damage to donor axons. The current study used in situ hybridization to test the hypothesis that insulin-like growth factor (IGF-I and IGF-II) mRNA levels increase at the coaptation site and grafted nerve following end-to-side repair, and that this increase is associated with axonal sprouting and growth. One week after end-to-side coaptation, IGF-I mRNA was localized predominantly on the epineurial side of the graft perineurium, while IGF-II was seen mainly on the endoneurial side. IGF-I hybridization was greatest at this time and declined by 2 weeks post-procedure. No changes in IGF mRNA levels occurred in the distal donor nerve. The increase in IGF-I mRNA at 1 week preceded the appearance of myelinated axons. The presence of myelinated axons within the graft 2 weeks after end-to-side coaptation was associated with a decline in IGF-I mRNA. These data are the first to demonstrate increased IGF mRNA levels associated with axonal sprouting and growth following end-to-side neurorrhaphy. Moreover, the findings support those of earlier studies by others implicating IGFs in axonal regeneration. The increase in IGF mRNA during sprouting and axonal growth into an end-to-side coaptation indicates that the local therapeutic augmentation of endogenous IGF levels at the coaptation site may enhance axonal sprouting from a minimally injured donor nerve, and thereby increase the number of axons that reinnervate the graft.
    [Abstract] [Full Text] [Related] [New Search]