These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glucose-fatty acid cycle to inhibit glucose utilization and oxidation is not operative in fatty acid-cultured islets.
    Author: Liu YQ, Tornheim K, Leahy JL.
    Journal: Diabetes; 1999 Sep; 48(9):1747-53. PubMed ID: 10480604.
    Abstract:
    The glucose-fatty acid cycle of Randle entails two elements: decreased pyruvate dehydrogenase (PDH) activity, which inhibits glucose oxidation, and inhibition of phosphofructokinase (PFK) by a rise in citrate so that glucose-6-phosphate (G-6-P) levels increase, thereby inhibiting hexokinase activity and hence glucose utilization. Chronic exposure of islets to long-chain fatty acids (FA) is reported to lower PDH activity, but the effect on glucose oxidation and glucose-induced insulin secretion is uncertain. We investigated rat islets that were cultured for 4 days with 0.25 mmol/l oleate/5.5 mmol/l glucose. Glucose oxidation was doubled at 2.8 mmol/l glucose and unchanged at 27.7 mmol/l glucose in the FA-cultured islets despite a 35% decrease in assayed PDH activity. Pyruvate content was increased 60%, which may well compensate for the decreased PDH activity and maintain flux through the citric acid cycle. However, a greater diversion of pyruvate metabolism through the pyruvate-malate shuttle is suggested by unchanged pyruvate carboxylase Vmax and a fourfold higher release of malate from isolated mitochondria. The FA-cultured islets also showed increased basal glucose usage and insulin secretion together with a lowered level of G-6-P and 50% reductions in citrate synthase Vmax and the citrate content. Thus, the effects of chronic FA exposure on islet glucose metabolism differ from the glucose-fatty acid interactions reported in some other tissues.
    [Abstract] [Full Text] [Related] [New Search]