These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prediction and compensation by an internal model for back forces during finger opening in an overarm throw. Author: Hore J, Watts S, Tweed D. Journal: J Neurophysiol; 1999 Sep; 82(3):1187-97. PubMed ID: 10482738. Abstract: Previous studies have indicated that timing of finger opening in an overarm throw is likely controlled centrally, possibly by means of an internal model of hand trajectory. The present objective was to extend the study of throwing to an examination of the dynamics of finger opening. Throwing a heavy ball and throwing a light ball presumably require different neural commands, because the weight of the ball affects the mechanics of the arm, and particularly, the mechanics of the finger. Yet finger control is critical to the accuracy of an overarm throw. We hypothesized that finger opening in an overarm throw is controlled by a central mechanism that uses an internal model to predict and compensate for movement-dependent back forces on the fingers. To test this idea we determined whether finger motion is affected by back forces, i.e., whether larger back forces cause larger finger extensions. Back forces were varied by having subjects throw, at the same fast speed, tennis-sized balls of different weights (14, 55, and 196 g). Arm- and finger-joint rotations were recorded with the search-coil technique; forces on the middle finger were measured with force transducers. Recordings showed that during ball release, the middle finger experienced larger back forces in throws with heavier balls. Nevertheless, most subjects showed proximal interphalangeal joint extensions that were unchanged or actually smaller with the heavier balls. This was the case for the first throw and for all subsequent throws with a ball of a new weight. This suggests that the finger flexors compensated for the larger back forces by exerting larger torques during finger extension. Supporting this view, at the moment of ball release, all finger joints flexed abruptly due to the now unopposed torques of the finger flexors, and the amplitude of this flexion was proportional to ball weight. We conclude that in overarm throws made with balls of different weights, the CNS predicts the different back forces from the balls and adjusts finger flexor torques accordingly. This is consistent with the view that finger opening in overarm throws is controlled by means of an internal model of the motor apparatus and the external load.[Abstract] [Full Text] [Related] [New Search]