These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Opioid and cannabinoid receptor-mediated regulation of the increase in adrenocorticotropin hormone and corticosterone plasma concentrations induced by central administration of delta(9)-tetrahydrocannabinol in rats.
    Author: Manzanares J, Corchero J, Fuentes JA.
    Journal: Brain Res; 1999 Aug 21; 839(1):173-9. PubMed ID: 10482810.
    Abstract:
    The purpose of this study was to investigate the cannabinoid and opioid mediated regulation on the effects of central Delta(9)-tetrahydrocannabinol (Delta(9)-THC) administration on hypothalamus-pituitary-adrenal (HPA) axis activity in the male rat. Intracerebroventricular (i.c.v.) administration of delta(9)-THC (25, 50, 100 microg/rat) markedly increased plasma adrenocorticotropin hormone (ACTH) and corticosterone concentrations. Time course effect studies revealed that both hormones secretion peaked at 60 min after Delta(9)-THC i.c.v. administration (50 microg/rat), decreased gradually and returned to baseline levels by 480 min. The i.c.v. administration of the specific cannabinoid receptor antagonist SR-141716A (3 microg/rat) significantly attenuated the increase of both hormones secretion induced by Delta(9)-THC (50 microg/rat). Nevertheless, higher doses (12.5 and 50 microg/rat) of this compound increased both ACTH and corticosterone plasma concentrations. Subcutaneous (s.c.) administration with the opiate receptor antagonist naloxone (0.3 mg/kg) was without effect but significantly diminished the increase of both hormones secretion induced by Delta(9)-THC (50 microg/rat). Taken together, these results indicate that opiate and cannabinoid receptors are involved in the activation of the HPA axis induced by Delta(9)-THC. Furthermore, the increase of ACTH and corticosterone secretion after the administration of higher doses of SR-141716A than those required to block such activation, suggests that endogenous cannabinoids are tonically inhibiting the release of both hormones or that this agonist-like activity may be part of an uncharacterized action of this compound not mediated by cannabinoid receptors.
    [Abstract] [Full Text] [Related] [New Search]