These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: beta-adrenergic agonists stimulate Na+-K+-Cl- cotransport by inducing intracellular Ca2+ liberation in crypt cells.
    Author: del Castillo JR, Arévalo JC, Burguillos L, Súlbaran-Carrasco MC.
    Journal: Am J Physiol; 1999 Sep; 277(3):G563-71. PubMed ID: 10484381.
    Abstract:
    Epinephrine and beta-adrenergic agonists (beta1 and beta2 for isoproterenol, beta1 for dobutamine, beta2 for salbutamol) stimulated K+ (or 86Rb) influx mediated by the Na+-K+-2Cl- cotransporter and the Na+-K+ pump in isolated colonic crypt cells. Preincubation with bumetanide abolished the epinephrine effect on the Na+-K+ pump, suggesting that the primary effect is on the cotransporter. Maximal effect was obtained with 1 microM epinephrine with an EC50 of 91.6 +/- 9.98 nM. Epinephrine-induced K+ transport was blocked by propranolol with an IC50 of 134 +/- 28.2 nM. alpha-Adrenergic drugs did not modify K+ transport mechanisms. Neither Ba2+ nor tetraethylammonium nor DIDS modified the adrenergic enhancement on the cotransporter. In addition, epinephrine did not affect K+ efflux. Dibutyryl cAMP did not alter K+ transport. Reduction of extracellular Ca2+ to 30 nM did not influence the response to epinephrine. However, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM abolished epinephrine-induced K+ transport. Ionomycin increased Na+-K+-2Cl- cotransport activity. Moreover, epinephrine increased intracellular Ca2+ concentration in a process inhibited by propranolol. In conclusion, epinephrine stimulated the Na+-K+-2Cl- cotransporter in a process mediated by beta1- and beta2-receptors and modulated by intracellular Ca2+ liberation.
    [Abstract] [Full Text] [Related] [New Search]