These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cyclic AMP mediates EDHF-type relaxations of rabbit jugular vein. Author: Griffith TM, Taylor HJ. Journal: Biochem Biophys Res Commun; 1999 Sep 16; 263(1):52-7. PubMed ID: 10486252. Abstract: Isolated rings of rabbit jugular vein have been used to test the hypothesis that formation of cAMP within the endothelial cell contributes to relaxations that are attributable to the endothelium-derived hyperpolarizing factor, EDHF. Relaxations induced by acetylcholine under conditions of combined NO synthase and cyclooxygenase blockade were almost abolished by inhibition of adenylate cyclase with the selective P-site agonist 2', 3'-dideoxyadenosine (2',3'-DDA). They were similarly attenuated by the gap junction inhibitors 18alpha-glycyrrhetinic acid (18alpha-GA) and Gap 27 peptide which interrupt direct endothelium-smooth muscle communication without themselves affecting smooth muscle tone. By contrast, stimulation of adenylate cyclase with forskolin promoted gap junction-dependent relaxations, with concentration-relaxation curves to this agent exhibiting an equivalent rightward shift in the presence of 18alpha-GA and following endothelial denudation. The findings suggest that cAMP may cross from the endothelium to smooth muscle via gap junction channels and/or enhance the endothelial hyperpolarization normally associated with agonist stimulation. Both mechanisms may contribute to EDHF/gap junction-dependent relaxations.[Abstract] [Full Text] [Related] [New Search]