These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of thioacetamide on the hepatic expression of gamma-glutamylcysteine synthetase subunits in the Rat.
    Author: Lu SC, Huang ZZ, Yang H, Tsukamoto H.
    Journal: Toxicol Appl Pharmacol; 1999 Sep 15; 159(3):161-8. PubMed ID: 10486302.
    Abstract:
    Glutathione (GSH) is the main nonprotein thiol important in antioxidant defense and maintenance of the intracellular redox state. A major determinant of the rate of GSH synthesis is the activity of the rate-limiting enzyme, gamma-glutamylcysteine synthetase (GCS). A heavy (HS) and light subunit (LS) make up GCS; oxidative stress regulates both transcriptionally. cis-Acting elements important for the oxidative stress-induced transcriptional up-regulation of both subunits are antioxidant response element (ARE) and activator protein-1 (AP-1) site. The nuclear factor-kappaB (NF-kappaB) binding site may also regulate the heavy subunit. Increased GSH and gamma-glutamyltranspeptidase are often observed in preneoplastic hepatocyte nodules and may be important in hepatocarcinogenesis. The current work examined the effect of a commonly used hepatocarcinogen, thioacetamide (TAA), on the expression of GCS subunits. After 3 weeks of TAA treatment, liver GSH level remained unchanged despite significant oxidative stress as measured by the thiobarbituric acid reactive substance assay. The mRNA levels of GCS-HS and GCS-LS increased six- and fourfold, respectively, and the protein level of GCS-HS and GCS activity all increased. Electrophorectic mobility shift assay showed binding to ARE, AP-1, and NF-kappaB probes all increased. These results suggest TAA treatment increased hepatic GCS subunit expression and GCS activity by inducing oxidative stress and increasing the binding to redox-sensitive cis-acting elements important for transcriptional up-regulation of GCS. This is the first in vivo study that examined the effect of a hepatocarcinogen on GCS expression.
    [Abstract] [Full Text] [Related] [New Search]