These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and structure determination of the adducts formed by electrochemical oxidation of Dibenzo[a,l]pyrene in the presence of adenine. Author: Li KM, Byun J, Gross ML, Zamzow D, Jankowiak R, Rogan EG, Cavalieri EL. Journal: Chem Res Toxicol; 1999 Sep; 12(9):749-57. PubMed ID: 10490495. Abstract: Because the radical cations of polycyclic aromatic hydrocarbons (PAH) are involved in tumor initiation, determination of the structures of biologically formed PAH-DNA adducts is important and relies on comparison of their properties with those of synthesized adducts. One of the possible sites of adduct formation is the N-3 position of Ade, but this depurinating adduct is not obtained by one-electron oxidation of dibenzo[a,l]pyrene (DB[a,l]P) in the presence of deoxyadenosine. Therefore, we turned to electrochemical oxidation of DB[a,l]P in the presence of Ade in dimethylformamide and produced the following adducts: DB[a,l]P-10-N1Ade (47%), DB[a, l]P-10-N3Ade (5%), DB[a,l]P-10-N7Ade (2%), and DB[a,l]P-10-N(6)Ade (6%). In Me(2)SO, this reaction afforded the same four adducts, but in slightly different yields: DB[a,l]P-10-N1Ade (44%), DB[a, l]P-10-N3Ade (9%), DB[a,l]P-10-N7Ade (1%), and DB[a,l]P-10-N(6)Ade (3%). These adducts were purified by reverse-phase HPLC, and the subtle differences between the isomers were revealed by NMR, tandem mass spectrometry, and fluorescence line-narrowing spectroscopy. The relative yields of the N1Ade, N3Ade, and N7Ade adducts reflect the nucleophilicity and steric accessibility of these three nitrogen atoms in Ade.[Abstract] [Full Text] [Related] [New Search]