These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rat optic nerve oligodendrocytes develop in the absence of viable retinal ganglion cell axons. Author: Ueda H, Levine JM, Miller RH, Trapp BD. Journal: J Cell Biol; 1999 Sep 20; 146(6):1365-74. PubMed ID: 10491397. Abstract: Retinal ganglion cell axons and axonal electrical activity have been considered essential for migration, proliferation, and survival of oligodendrocyte lineage cells in the optic nerve. To define axonal requirements during oligodendrogenesis, the developmental appearance of oligodendrocyte progenitors and oligodendrocytes were compared between normal and transected optic nerves. In the absence of viable axons, oligodendrocyte precursors migrated along the length of the nerve and subsequently multiplied and differentiated into myelin basic protein-positive oligodendrocytes at similar densities and with similar temporal and spatial patterns as in control nerves. Since transected optic nerves failed to grow radially, the number of oligodendrocyte lineage cells was reduced compared with control nerves. However, the mitotic indices of progenitors and the percentage of oligodendrocytes undergoing programmed cell death were similar in control and transected optic nerves. Oligodendrocytes lacked their normal longitudinal orientation, developed fewer, shorter processes, and failed to form myelin in the transected nerves. These data indicate that normal densities of oligodendrocytes can develop in the absence of viable retinal ganglion axons, and support the possibility that axons assure their own myelination by regulating the number of myelin internodes formed by individual oligodendrocytes.[Abstract] [Full Text] [Related] [New Search]