These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Taxol affects nuclear lamina and pore complex organization and inhibits import of karyophilic proteins into the cell nucleus. Author: Theodoropoulos PA, Polioudaki H, Kostaki O, Derdas SP, Georgoulias V, Dargemont C, Georgatos SD. Journal: Cancer Res; 1999 Sep 15; 59(18):4625-33. PubMed ID: 10493517. Abstract: Treatment of human carcinoma cells with Taxol induces focal unraveling of the nuclear lamina and extensive clustering or ectopic localization of the nuclear pore complexes. These striking aberrations develop when the cells are transferred to drug-free medium and are allowed to complete mitosis. As could be confirmed by terminal deoxynucleotidyl transferase-mediated nick end labeling assays, 4,6-diamidino-2-phenylindole staining, 5-bromo-2-deoxyuridine incorporation, and examination of the nuclear lamins by Western blotting, the malformation of the nuclear envelope is not a consequence of apoptosis or G1 arrest. In fact, Taxol-treated cells possessing a defective nuclear envelope remain alive and replication-competent for at least 24 h, undergoing programmed death 72 h after removal of the drug. While still in the nonapoptotic state, these cells lose the ability to import karyophilic proteins into the nucleus. Diminished nucleocytoplasmic transport through the nuclear pore complex can be readily demonstrated by in vitro assays involving digitonin-permeabilized cells or in vivo monitoring of nuclear factor-kappaB translocation upon stimulation with tumor necrosis factor-alpha. These observations reveal novel cellular targets of antimicrotubule drugs and may pave the way for improved schemes of anticancer treatment.[Abstract] [Full Text] [Related] [New Search]