These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of fatty acid binding proteins is altered in aged mouse brain. Author: Pu L, Igbavboa U, Wood WG, Roths JB, Kier AB, Spener F, Schroeder F. Journal: Mol Cell Biochem; 1999 Aug; 198(1-2):69-78. PubMed ID: 10497880. Abstract: Brain membrane lipid fatty acid composition and consequently membrane fluidity change with increasing age. Intracellular fatty acid binding proteins (FABPs) such as heart H-FABP and the brain specific B-FABP, detected by immunoblotting of brain tissue, are thought to be involved in fatty acid uptake, metabolism, and differentiation in brain. Yet, almost nothing is known regarding the effect of age on the expression of the cytosolic fatty acid binding proteins (FABPs) or their content in brain subfractions. Electrophoresis and quantitative immunoblotting were used to examine the content of these FABPs in synaptosomes in brains from 4, 15, and 25 month old C57BL/6NNia male mice. Brain H-FABP and B-FABP were differentially expressed in mouse brain subcellular fractions. Brain H-FABP was highly concentrated in synaptosomal cytosol. The level of brain H-FABP in synaptosomes, synaptosomal cytosol, and intrasynaptosomal membranes was decreased 33, 35, and 43%, respectively, in 25 month old mice. B-FABP was detected in lower quantity than H-FABP. More important, B-FABP decreased in synaptosomes, synaptic plasma membranes, and synaptosomal cytosol from brains of 25 month old mice. In contrast to H-FABP, B-FABP was not detectable in the intrasynaptosomal membranes in any of the three age groups of mice. In conclusion, expression of both H-FABP and B-FABP was markedly reduced in aged mouse brain. Age differences in brain H-FABP and B-FABP levels in synaptosomal plasma membranes and synaptosomal cytosol may be important factors modulating neuronal differentiation and function.[Abstract] [Full Text] [Related] [New Search]