These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and in vitro biological activity of 4alpha-(2-propenyl)-5alpha-cholest-24-en-3alpha,12 alpha-diol, a 12alpha-hydroxyl analog of 4alpha-(2-propenyl)-5alpha-cholest-24-en-3alpha-ol: the latter is a potent activator of the low-density lipoprotein receptor promoter.
    Author: Lin HS, Rampersaud AA, Beavers LS, McClure DB, Gardner AJ, Eacho PI, Foxworthy PS, Gadski RA.
    Journal: Steroids; 1999 Oct; 64(10):735-41. PubMed ID: 10498032.
    Abstract:
    4alpha-(2-Propenyl)-5alpha-cholest-24-en-3alpha-ol (3) was shown recently in a Chinese hamster ovary (CHO) cell-based low-density lipoprotein receptor/luciferase (LDLR/Luc) assay to be a potent transcriptional activator of the LDL receptor promoter in the presence of 25-hydroxycholesterol. Because of the involvement of 12alpha-hydroxylation in the metabolism of cholesterol, we are interested in investigating the effect of introducing a 12alpha-hydroxyl group to 3 on the transcriptional activity of the LDL receptor promoter. Thus 4alpha-(2-propenyl)-5alpha-cholest-24-en-3alpha,12a lpha-diol (14), a 12alpha-hydroxyl analog of 3, was synthesized from deoxycholic acid via the formation of 12alpha-[[(tertbutyl)dimethylsilyl]oxy]-4alpha-( 2-propenyl)-5alpha-cholest-24-en-3-one (11). Test results show that 14 is inactive at concentrations of up to 20 microg/ml, compared to 3 with an EC30 value of 2.6 microM, in the CHO cell-based LDLR/Luc assay. Apparently introduction of a 12alpha-hydroxyl group abolishes the capability of 3alpha-sterol 14 to activate the transcription of the LDL receptor promoter. However, in the [1-14C-acetate]cholesterol biosynthesis inhibition assay in CHO cells, 14 at 10 microg/ml (23 microM) is shown to inhibit the cholesterol biosynthesis by 51% relative to the control cells. Our previous studies indicated that 3 showed a 38% inhibition, but 4alpha-(2-propenyl)-5alpha-cholestan-3alpha-ol (1) exhibited no inhibition in the same assay at 10 microg/ml. In summary the results indicate that, in addition to the 24,25-unsaturation, the 12alpha-hydroxyl group in 14 has also conferred an inhibitory effect on cholesterol biosynthesis in CHO cells; however, the inhibition of cholesterol biosynthesis by 14 does not lead to the transcriptional activation of the LDL receptor promoter.
    [Abstract] [Full Text] [Related] [New Search]