These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insulin stimulates transepithelial sodium transport by activation of a protein phosphatase that increases Na-K ATPase activity in endometrial epithelial cells.
    Author: Deachapunya C, Palmer-Densmore M, O'Grady SM.
    Journal: J Gen Physiol; 1999 Oct; 114(4):561-74. PubMed ID: 10498674.
    Abstract:
    The objective of this study was to investigate the effects of insulin and insulin-like growth factor I on transepithelial Na(+) transport across porcine glandular endometrial epithelial cells grown in primary culture. Insulin and insulin-like growth factor I acutely stimulated Na(+) transport two- to threefold by increasing Na(+)-K(+) ATPase transport activity and basolateral membrane K(+) conductance without increasing the apical membrane amiloride-sensitive Na(+) conductance. Long-term exposure to insulin for 4 d resulted in enhanced Na(+) absorption with a further increase in Na(+)-K(+) ATPase transport activity and an increase in apical membrane amiloride-sensitive Na(+) conductance. The effect of insulin on the Na(+)-K(+) ATPase was the result of an increase in V(max) for extracellular K(+) and intracellular Na(+), and an increase in affinity of the pump for Na(+). Immunohistochemical localization along with Western blot analysis of cultured porcine endometrial epithelial cells revealed the presence of alpha-1 and alpha-2 isoforms, but not the alpha-3 isoform of Na(+)-K(+) ATPase, which did not change in the presence of insulin. Insulin-stimulated Na(+) transport was inhibited by hydroxy-2-naphthalenylmethylphosphonic acid tris-acetoxymethyl ester [HNMPA-(AM)(3)], a specific inhibitor of insulin receptor tyrosine kinase activity, suggesting that the regulation of Na(+) transport by insulin involves receptor autophosphorylation. Pretreatment with wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase as well as okadaic acid and calyculin A, inhibitors of protein phosphatase activity, also blocked the insulin-stimulated increase in short circuit and pump currents, suggesting that activation of phosphatidylinositol 3-kinase and subsequent stimulation of a protein phosphatase mediates the action of insulin on Na(+)-K(+) ATPase activation.
    [Abstract] [Full Text] [Related] [New Search]