These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Author: Buszczak M, Freeman MR, Carlson JR, Bender M, Cooley L, Segraves WA. Journal: Development; 1999 Oct; 126(20):4581-9. PubMed ID: 10498692. Abstract: The steroid hormone ecdysone regulates larval development and metamorphosis in Drosophila melanogaster through a complex genetic hierarchy that begins with a small set of early response genes. Here, we present data indicating that the ecdysone response hierarchy also mediates egg chamber maturation during mid-oogenesis. E75, E74 and BR-C are expressed in a stage-specific manner while EcR expression is ubiquitous throughout oogenesis. Decreasing or increasing the ovarian ecdysone titer using a temperature-sensitive mutation or exogenous ecdysone results in corresponding changes in early gene expression. The stage 10 follicle cell expression of E75 in wild-type, K10 and EGF receptor (Egfr) mutant egg chambers reveals regulation of E75 by both the Egfr and ecdysone signaling pathways. Genetic analysis indicates a germline requirement for ecdysone-responsive gene expression. Germline clones of E75 mutations arrest and degenerate during mid-oogenesis and EcR germline clones exhibit a similar phenotype, demonstrating a functional requirement for ecdysone responsiveness during the vitellogenic phase of oogenesis. Finally, the expression of Drosophila Adrenodoxin Reductase increases during mid-oogenesis and clonal analysis confirms that this steroidogenic enzyme is required in the germline for egg chamber development. Together these data suggest that the temporal expression profile of E75, E74 and BR-C may be a functional reflection of ecdysone levels and that ecdysone provides temporal signals regulating the progression of oogenesis and proper specification of dorsal follicle cell fates.[Abstract] [Full Text] [Related] [New Search]