These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Laboratory testing of femoral venous cannulae: effect of size, position and negative pressure on flow.
    Author: Kurusz M, Deyo DJ, Sholar AD, Tao W, Zwischenberger JB.
    Journal: Perfusion; 1999 Sep; 14(5):379-87. PubMed ID: 10499655.
    Abstract:
    Femoral venous cannulae (17-28 French) were tested to compare flows obtained by their placement in a simulated inferior vena cava (IVC) or right atrium (RA) and by varying drainage pressures using gravity siphon drainage or a centrifugal pump in the venous line. The circuit consisted of conventional tubing and equipment including a segment of thin-walled latex tubing to simulate the IVC connected to a flexible reservoir to simulate the RA. The test fluid was a 40% glycerin solution. Flow was measured at height differentials of 30-60 cm (cannula-to-inlet of hard-shell venous reservoir) and with a -10 to -80 mmHg negative pressure created by the centrifugal pump. A roller pump returned the test fluid to a flexible bag to maintain a filling pressure of 0-1 mmHg. Flow increased modestly with an increasing height differential. When negative pressure was applied with the centrifugal pump, flow increased 10% and 18% (IVC and RA positions, respectively) compared to gravity siphon drainage conditions. There also was a tendency for flow to plateau or cease when the centrifugal pump was used at higher levels of negative pressure or when larger cannulae were used. We conclude: (1) position of smaller cannulae in the RA yield better flows than when the cannulae are larger and placed in the IVC; (2) smaller-sized cannulae are capable of achieving higher flows when the centrifugal pump is used; (3) cannulae must be properly positioned to achieve maximum flow; (4) the centrifugal pump will augment flow, but should be regulated to avoid extreme negative pressures; and (5) cannula design has no demonstrable effect on flow.
    [Abstract] [Full Text] [Related] [New Search]