These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The interaction of binocular disparity and motion parallax in determining perceived depth and perceived size.
    Author: Bradshaw MF, Parton AD, Eagle RA.
    Journal: Perception; 1998; 27(11):1317-31. PubMed ID: 10505177.
    Abstract:
    Although binocular disparity and motion parallax are powerful cues for depth, neither, in isolation, can specify information about both object size and depth. It has been shown that information from both cues can be combined to specify the size, depth, and distance of an object in a scene (Richards, 1985 Journal of the Optical Society of America A 2 343-349). Experiments are reported in which natural viewing and physical stimuli have been used to investigate the nature of size and depth perception on the basis of disparity and parallax presented separately and together at a range of viewing distances. Observers adjusted the relative position of three bright LEDs, which were constrained to form a triangle in plan view with the apex pointing toward the observer, so its dimensions matched that of a standard held by the subject. With static monocular viewing, depth settings were inaccurate and erratic. When both cues were present together accuracy increased and the perceptual outcome was consistent with an averaging of the information provided by both cues. When an apparent bias evident in the observers' responses (the tendency to under-estimate the size of the standard) was taken into account, accuracy was high and size and depth constancy were close to 100%. In addition, given this assumption, the same estimate of viewing distance was used to scale size and depth estimates.
    [Abstract] [Full Text] [Related] [New Search]