These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vascular endothelial growth factor induces nephrogenesis and vasculogenesis.
    Author: Tufro A, Norwood VF, Carey RM, Gomez RA.
    Journal: J Am Soc Nephrol; 1999 Oct; 10(10):2125-34. PubMed ID: 10505689.
    Abstract:
    The expression of vascular endothelial growth factor (VEGF) and its receptors Flt-1 and Flk-1 in the rat kidney was examined during ontogeny using Northern blot analysis and immunocytochemistry. In prevascular embryonic kidneys (embryonic day 14 [E14]), immunoreactive Flt-1 and Flk-1 were observed in isolated angioblasts, whereas VEGF was not detected. Angioblasts aligned forming cords before morphologically differentiating into endothelial cells. In late fetal kidneys (E19), immunoreactive VEGF was detected in glomerular epithelial and tubular cells, whereas Flt-1 and Flk-1 were expressed in contiguous endothelial cells. To determine whether VEGF induces endothelial cell differentiation and vascular development in the kidney, the effect of recombinant human VEGF (5 ng/ml) was examined on rat metanephric organ culture, a model known to recapitulate nephrogenesis in the absence of vessels. After 6 d in culture in serum-free, defined media, metanephric kidney growth and morphology were assessed. DNA content was higher in VEGF-treated explants (1.9 +/- 0.17 microg/kidney, n = 9) than in paired control explants (1.4 +/- 0.10 microg/kidney, n = 9) (P < 0.05). VEGF induced proliferation of tubular epithelial cells, as indicated by an increased number of tubules and tubular proliferating cell nuclear antigen-containing cells. VEGF induced upregulation of Flk-1 and Flt-1 expression, as assessed by Western blot analysis. Developing endothelial cells were identified and localized using immunocytochemistry and electron microscopy. Flt-1, Flk-1, and angiotensin-converting enzyme-containing cells were detected in VEGF-treated explants, whereas control explants were negative. These studies confirmed previous reports indicating that the expression of VEGF and its receptors is temporally and spatially associated with kidney vascularization and identified angioblasts expressing Flt-1 and Flk-1 in prevascular embryonic kidneys. The data indicate that VEGF expression is downregulated in standard culture conditions and that VEGF stimulates growth of embryonic kidney explants by expanding both endothelium and epithelium, resulting in vasculogenesis and enhanced tubulogenesis. These data suggest that VEGF plays a critical role in renal development by promoting endothelial cell differentiation, capillary formation, and proliferation of tubular epithelia.
    [Abstract] [Full Text] [Related] [New Search]