These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Association of cystic fibrosis transmembrane conductance regulator and protein phosphatase 2C. Author: Zhu T, Dahan D, Evagelidis A, Zheng S, Luo J, Hanrahan JW. Journal: J Biol Chem; 1999 Oct 08; 274(41):29102-7. PubMed ID: 10506164. Abstract: Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels are rapidly deactivated by a membrane-bound phosphatase activity. The efficiency of this regulation suggests CFTR and protein phosphatases may be associated within a regulatory complex. In this paper we test that possibility using co-immunoprecipitation and cross-linking experiments. A monoclonal anti-CFTR antibody co-precipitated type 2C protein phosphatase (PP2C) from baby hamster kidney cells stably expressing CFTR but did not co-precipitate PP1, PP2A, or PP2B. Conversely, a polyclonal anti-PP2C antibody co-precipitated CFTR from baby hamster kidney membrane extracts. Exposing baby hamster kidney cell lysates to dithiobis (sulfosuccinimidyl propionate) caused the cross-linking of histidine-tagged CFTR (CFTR(His10)) and PP2C into high molecular weight complexes that were isolated by chromatography on Ni(2+)-nitrilotriacetic acid-agarose. Chemical cross-linking was specific for PP2C, because PP1, PP2A, and PP2B did not co-purify with CFTR(His10) after dithiobis (sulfosuccinimidyl propionate) exposure. These results suggest CFTR and PP2C exist in a stable complex that facilitates regulation of the channel.[Abstract] [Full Text] [Related] [New Search]