These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Residues of 14-3-3 zeta required for activation of exoenzyme S of Pseudomonas aeruginosa.
    Author: Zhang L, Wang H, Masters SC, Wang B, Barbieri JT, Fu H.
    Journal: Biochemistry; 1999 Sep 14; 38(37):12159-64. PubMed ID: 10508420.
    Abstract:
    Exoenzyme S (ExoS) is a mono-ADP-ribosyltransferase secreted by the opportunistic pathogen Pseudomonas aeruginosa. ExoS requires a eukaryotic factor, the 14-3-3 protein, for enzymatic activity. Here, two aspects of the activation of the ADP-ribosyltransferase activity of ExoS by 14-3-3 proteins are examined. Initial studies showed that several isoforms of 14-3-3, including beta, zeta, eta, sigma, and tau, activated ExoS with similar efficiency. This implicates a conserved structure in 14-3-3 that contributes to the interaction between 14-3-3 and ExoS. One candidate structure is the conserved amphipathic groove that mediates the 14-3-3/Raf-1 interaction. The next series of experiments examined the role of individual amino acids of the amphipathic groove of 14-3-3 zeta in ExoS activation and showed that ExoS activation required the basic residues lining the amphipathic groove of 14-3-3 zeta without extensive involvement of the hydrophobic residues. Strikingly, mutations of Val-176 of 14-3-3 zeta that disrupted its interaction with Raf-1 did not affect the binding and activation of ExoS by 14-3-3. Thus, ExoS selectively employs residues in the Raf-binding groove for its association with 14-3-3 proteins.
    [Abstract] [Full Text] [Related] [New Search]