These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and structure-activity relationships of phenylenebis(methylene)-linked bis-azamacrocycles that inhibit HIV-1 and HIV-2 replication by antagonism of the chemokine receptor CXCR4. Author: Bridger GJ, Skerlj RT, Padmanabhan S, Martellucci SA, Henson GW, Struyf S, Witvrouw M, Schols D, De Clercq E. Journal: J Med Chem; 1999 Sep 23; 42(19):3971-81. PubMed ID: 10508445. Abstract: Bis-tetraazamacrocycles such as the bicyclam AMD3100 are a class of potent and selective anti-HIV-1 and HIV-2 agents that inhibit virus replication by binding to the chemokine receptor CXCR4, the co-receptor for entry of X4 viruses. With the aim of optimizing the anti-HIV-1 and HIV-2 activity of bis-azamacrocycles, a series of analogues were synthesized which contain neutral heteroatom (oxygen, sulfur) or heteroaromatic (of lower pK(a) than a secondary amine) replacements for the amino groups of AMD3100. The introduction of one or more heteroatoms such as oxygen or sulfur into the macrocyclic ring of p-phenylenebis(methylene)-linked dimers (to give N(3)X or N(2)X(2) bis-macrocycles) gave analogues with substantially reduced anti-HIV-1 (III(B)) and anti-HIV-2 (ROD) potency. In addition, the bis-sulfur analogue was also markedly more cytotoxic to MT-4 cells. However, bis-tetraazamacrocycles featuring a single pyridine group incorporated within the macrocyclic framework exhibited anti-HIV-1 and HIV-2 potency comparable to that of their saturated, aliphatic counterparts. The p-phenylenebis(methylene)-linked dimer of the py[14]aneN(4) macrocycle inhibited HIV-1 replication at a 50% effective concentration (EC(50)) of 0.5 microM while remaining nontoxic to MT-4 cells at concentrations approaching 200 microM. A series of analogues containing macrocyclic heteroaromatic groups of varying pK(a) were also synthesized, and their ability to inhibit HIV replication was evaluated. Replacing the pyridine moiety of the py[14]aneN(4) macrocyclic ring with pyrazine or pyridine groups substituted in the 4-position (with electron-withdrawing or -donating groups) either reduced antiviral potency or increased cytotoxicity to MT-4 cells. Finally, we synthesized a series of analogues in which the ring size of the bis-pyridyl macrocycles was varied between 12 and 16 members per ring including the py[iso-14]aneN(4) ring system, an isomer of the py[14]aneN(4) macrocycle. The p-phenylenebis(methylene)-linked dimer of the py[iso-14]aneN(4) (AMD3329) displayed the highest antiviral activity of the bis-azamacrocyclic analogues reported to date, exhibiting EC(50)'s against the cytopathic effects of HIV-1 and HIV-2 replication of 0.8 and 1.6 nM, respectively, that is, about 3-5-fold lower than the EC(50) of AMD3100. AMD3329 also inhibited the binding of a specific CXCR4 mAb and the Ca(2+) flux induced by SDF-1alpha, the natural ligand for CXCR4, more potently than AMD3100. Furthermore, AMD3329 also interfered with virus-induced syncytium formation at an EC(50) of 12 nM.[Abstract] [Full Text] [Related] [New Search]