These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cdc42-induced actin filaments are protected from capping protein. Author: Huang M, Yang C, Schafer DA, Cooper JA, Higgs HN, Zigmond SH. Journal: Curr Biol; 1999 Sep 09; 9(17):979-82. PubMed ID: 10508585. Abstract: Each actin filament has a pointed and a barbed end, however, filament elongation occurs primarily at the barbed end. Capping proteins, by binding to the barbed end, can terminate this elongation. The rate of capping depends on the concentration of capping protein [1], and thus, if capping terminates elongation, the length of filaments should vary inversely with the concentration of capping protein. In cell extracts, such as those derived from neutrophils, new actin filaments can be nucleated by addition of GTPgammaS-activated Cdc42 (a small GTPase of the Rho family). To determine whether elongation of these filaments is terminated by capping, we manipulated the concentration of capping protein, the major calcium-independent capping protein in neutrophils, and observed the effects on filament lengths. Depletion of 70% of the capping protein from extracts increased the mean length of filaments elongated from spectrin-actin seeds (very short actin filaments with free barbed ends) but did not increase the mean length of filaments induced by Cdc42. Furthermore, doubling the concentration of capping protein in cell extracts by adding pure capping protein did not decrease the mean length of filaments induced by Cdc42. These results suggest that the barbed ends of Cdc42-induced filaments are protected from capping by capping protein.[Abstract] [Full Text] [Related] [New Search]