These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Action of serotonin on the hyperpolarization-activated cation current (Ih) in rat CA1 hippocampal neurons. Author: Gasparini S, DiFrancesco D. Journal: Eur J Neurosci; 1999 Sep; 11(9):3093-100. PubMed ID: 10510173. Abstract: We studied the effects of serotonin (5-HT) on hippocampal CA1 pyramidal neurons. In current-clamp mode, 5-HT induced a hyperpolarization and reduction of excitability due to the opening of inward rectifier K+ channels, followed by a late depolarization and partial restoration of excitability. These two components could be dissociated, as in the presence of BaCl2 to block K+ channels, 5-HT induced a depolarization accompanied by a reduction of membrane resistance, whereas in the presence of ZD 7288 [4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride], a selective blocker of the hyperpolarization-activated cation current (Ih), 5-HT only hyperpolarized neurons. We then studied the action of 5-HT on Ih in voltage-clamp conditions. 5-HT increased Ih at -90 mV by 29.1 +/- 2.9% and decreased the time constant of activation by 20.1 +/- 1.7% (n = 16), suggesting a shift in the voltage dependence of the current towards more positive potentials; however, the fully activated current measured at -140 mV also increased (by 14.1 +/- 1.7%, n = 14); this increase was blocked by ZD 7288, implying an effect of 5-HT on the maximal conductance of Ih. Both the shift of activation curve and the increase in maximal conductance were confirmed by data obtained with ramp protocols. Perfusion with the membrane-permeable analogue of cAMP, 8-bromoadenosine 3'5'-cyclic monophosphate (8-Br-cAMP), increased Ih both at -90 and -140 mV, although the changes induced were smaller than those due to 5-HT. Our data indicate that 5-HT modulates Ih by shifting its activation curve to more positive voltages and by increasing its maximal conductance, and that this action is likely to contribute to the 5-HT modulation of excitability of CA1 cells.[Abstract] [Full Text] [Related] [New Search]