These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structure and regulation of the salivary gland secretion protein gene Sgs-1 of Drosophila melanogaster. Author: Roth GE, Wattler S, Bornschein H, Lehmann M, Korge G. Journal: Genetics; 1999 Oct; 153(2):753-62. PubMed ID: 10511555. Abstract: The Drosophila melanogaster gene Sgs-1 belongs to the secretion protein genes, which are coordinately expressed in salivary glands of third instar larvae. Earlier analysis had implied that Sgs-1 is located at the 25B2-3 puff. We cloned Sgs-1 from a YAC covering 25B2-3. Despite using a variety of vectors and Escherichia coli strains, subcloning from the YAC led to deletions within the Sgs-1 coding region. Analysis of clonable and unclonable sequences revealed that Sgs-1 mainly consists of 48-bp tandem repeats encoding a threonine-rich protein. The Sgs-1 inserts from single lambda clones are heterogeneous in length, indicating that repeats are eliminated. By analyzing the expression of Sgs-1/lacZ fusions in transgenic flies, cis-regulatory elements of Sgs-1 were mapped to lie within 1 kb upstream of the transcriptional start site. Band shift assays revealed binding sites for the transcription factor fork head (FKH) and the factor secretion enhancer binding protein 3 (SEBP3) at positions that are functionally relevant. FKH and SEBP3 have been shown previously to be involved in the regulation of Sgs-3 and Sgs-4. Comparison of the levels of steady state RNA and of the transcription rates for Sgs-1 and Sgs-1/lacZ reporter genes indicates that Sgs-1 RNA is 100-fold more stable than Sgs-1/lacZ RNA. This has implications for the model of how Sgs transcripts accumulate in late third instar larvae.[Abstract] [Full Text] [Related] [New Search]