These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contrast enhancement of intracranial lesions: conventional T1-weighted spin-echo versus fast spin-echo MR imaging techniques.
    Author: Sugahara T, Korogi Y, Ge Y, Shigematsu Y, Liang L, Yoshizumi K, Kitajima M, Takahashi M.
    Journal: AJNR Am J Neuroradiol; 1999 Sep; 20(8):1554-9. PubMed ID: 10512245.
    Abstract:
    BACKGROUND AND PURPOSE: The T1-weighted fast spin-echo (T1-FSE) MR imaging sequence is not used routinely, since the speed advantage is not as dramatic as it is in T2-weighted imaging. We evaluated the T1-FSE sequence to determine whether this technique can replace the conventional T1-weighted spin-echo (T1-SE) sequence for routine contrast-enhanced imaging. METHODS: Sixty-nine patients with intracranial enhancing lesions underwent both T1-SE and T1-FSE sequences in a random order after administration of contrast agent. Acquisition time was 55 seconds for the T1-FSE sequence and 2 minutes 38 seconds for the SE sequence. The conspicuity of enhancing lesions, peritumoral edema, and gray-to-white matter contrast as well as motion and flow artifacts were analyzed. Signal-to-noise ratios of enhancing lesions, gray matter, and white matter as well as contrast-to-noise ratios (CNRs) of enhancing lesions, with gray matter with white matter as the standard, were calculated. RESULTS: The conspicuity of enhancing lesions was better on T1-FSE sequences than on T1-SE sequences, although the difference in the CNRs of enhancing lesions did not reach significance. Images obtained with the T1-FSE sequence showed less flow and motion artifacts than did those obtained with the T1-SE sequence. The conspicuity of peritumoral edema and gray-to-white matter contrast was lower on the T1-FSE images than on the T1-SE images. CONCLUSION: The T1-FSE sequence reduces imaging time and has the potential to replace the conventional T1-SE sequence for the evaluation of enhancing lesions in the brain when time is a consideration.
    [Abstract] [Full Text] [Related] [New Search]