These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential expression of protein kinase C isoform transcripts in human hematopoietic progenitors undergoing differentiation. Author: Oshevski S, Le Bousse-Kerdilès MC, Clay D, Levashova Z, Debili N, Vitral N, Jasmin C, Castagna M. Journal: Biochem Biophys Res Commun; 1999 Oct 05; 263(3):603-9. PubMed ID: 10512725. Abstract: Protein kinase C (PKC), a key component of the signaling pathways leading to proliferation and differentiation, consists of a family closely related serine/threonine protein kinases. The mRNA expression of these PKC isoforms has been characterized during hematopoietic differentiation. Using the reverse-transcriptase polymerase chain reaction technique, we have analyzed the levels of isoform transcripts in bone marrow CD34(+) hematopoietic progenitors and their progeny differentiated along erythroid, megakaryocyte, or granulocyte/monocyte lineages, upon exposure to growth factors. In contrast with isoforms alpha, beta(I), beta(II), delta, and epsilon, ubiquitously expressed, isoforms theta, eta/L, zeta, and iota/lambda exhibited a lineage-restricted expression. These qualitative changes, which allow to distinguish the erythroid and megakaryocyte phenotypes from the granulocyte/monocyte phenotype, include zeta exclusively upregulated in granulocytes/monocytes and theta, eta/L, and iota/lambda exclusively expressed in megakaryocytes and erythroblasts. In contrast, erythroblasts and megakaryocytes, which supposedly share a common bipotential progenitor, displayed only quantitative changes. These results evidence the selective expression of PKC isoforms at transcriptional and/or posttranscriptional levels in hematopoietic progenitors induced to differentiate, which may suggest a differential contribution of individual isoforms to cellular signaling.[Abstract] [Full Text] [Related] [New Search]