These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction between acoustic and electric sensitization of the acoustic startle response in rats.
    Author: Plappert CF, Pilz PK, Schnitzler HU.
    Journal: Behav Brain Res; 1999 Sep; 103(2):195-201. PubMed ID: 10513587.
    Abstract:
    Sensitization is the general increase of responsiveness observed after aversive stimulation. Usually footshocks are used as aversive stimuli. According to the 'Dual Process Theory' by Groves and Thompson. Psychol. Rev. 1970;77:419-450, not only additional aversive stimuli but also the response-eliciting stimuli themselves have a sensitizing effect, the degree of sensitization depending upon the stimulus intensity. We tested this suggestion in the footshock sensitization paradigm of the acoustic startle response (ASR): (1) High SPL (sound pressure level) acoustic stimuli (119 dB SPL) presented instead of footshocks also elicited strong sensitization. (2) While footshocks presented after startle stimuli with low SPL (95 dB) were able to produce a strong further sensitization of the ASR, footshocks presented after startle stimuli with high SPL (110 dB) only caused a minor sensitization of the ASR. (3) Diazepam (3 mg/kg i.p.) decreased ASR to high SPL (115 dB) stimuli. In this case footshocks elicited significant sensitization of the ASR despite intense startle stimuli. The present results support the 'Dual Process Theory'. Furthermore we could show that acoustic and footshock sensitization interact. We therefore suggest that both, acoustic and footshock sensitization, are mediated partly via the same neural circuitry.
    [Abstract] [Full Text] [Related] [New Search]