These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neurogenesis in the median domain of the embryonic brain of the grasshopper Schistocerca gregaria.
    Author: Ludwig P, Williams JL, Lodde E, Reichert H, Boyan GS.
    Journal: J Comp Neurol; 1999 Nov 22; 414(3):379-90. PubMed ID: 10516603.
    Abstract:
    Embryonic development in the median domain of the brain of the grasshopper Schistocerca gregaria was investigated with immunohistochemical, histological, and intracellular dye injection techniques. The early head midline is divisible into a dorsal median domain and a ventral median domain based on the orientation of cell somata in each region. At 25% of embryogenesis, a single large midline precursor differentiates in the dorsal median domain and produces a lineage of six neuronal progeny before degenerating. No further precursors arise. In addition, the primary commissure pioneers and a pair of lateral neurons differentiate directly from the ectoderm in this region. Lucifer yellow dye injected into the midline precursor stains only this cell and its progeny. Similarly, there is no dye coupling from the primary commissure pioneers to the midline lineage or to neuroblasts of the brain hemispheres. Neurogenesis in the dorsal median domain therefore proceeds separately within each subset of cells, and is not related to development in the brain hemispheres. Beginning at 42% of embryogenesis, the primary commissure pioneers undergo a morphological transformation and concomittantly express the Term-1 antigen. Expression continues throughout embryogenesis and into the adult, where the midline primary commissure pioneer cells are the only ones labeled by Term-1 in the entire brain. The cellular organization of the dorsal median domain therefore remains remarkably conserved throughout embryogenesis, even as the brain undergoes extensive morphological transformation.
    [Abstract] [Full Text] [Related] [New Search]