These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Manipulation of cholesterol and cholesteryl ester synthesis has multiple effects on the metabolism of apolipoprotein B and the secretion of very-low-density lipoprotein by primary hepatocyte cultures. Author: Brown A, Wiggins D, Gibbons GF. Journal: Biochim Biophys Acta; 1999 Sep 22; 1440(2-3):253-65. PubMed ID: 10521709. Abstract: Inhibition of esterified and non-esterified cholesterol synthesis by lovastatin in primary rat hepatocytes suppressed the net synthesis and very-low-density lipoprotein (VLDL) secretion of apolipoprotein B (apoB)-48 and apoB-100. Lovastatin did not alter the rates of apoB-48 and apoB-100 post-translational degradation. 25-Hydroxycholesterol, which inhibited non-esterified cholesterol synthesis but increased the synthesis of cholesteryl ester, showed differential effects on the metabolism of apoB-48 and apoB-100. Whereas the secretion of apoB-48 VLDL was suppressed there was no effect on the secretion of apoB-100 VLDL. The post-translational degradation of apoB-48, but not of apoB-100, was enhanced by 25-hydroxycholesterol. The net synthesis rates of apoB-48 and apoB-100 were unaffected by 25-hydroxycholesterol. The inhibitory effect of lovastatin alone on the net synthesis of apoB-48 and apoB-100 was reversed by the simultaneous presence of 25-hydroxycholesterol, suggesting a role for newly synthesised cholesteryl ester. Prevention of the reversal effect by the acyl-CoA: cholesterol acyltransferase (ACAT) inhibitor YM 17E supported this interpretation. In the presence of lovastatin, restoration of the net synthesis of apoB by 25-hydroxycholesterol was not accompanied by an increased VLDL output of apoB-48 and apoB-100. However, under these conditions there was an increased post-translational degradation of apoB-48 and apoB-100. These results suggest that interference with intracellular cholesterol and cholesteryl ester metabolism interrupts VLDL assembly at sites of both apoB net synthesis and post-translational degradation.[Abstract] [Full Text] [Related] [New Search]