These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antagonistic effects of protein kinase C alpha and delta on both transformation and phospholipase D activity mediated by the epidermal growth factor receptor. Author: Hornia A, Lu Z, Sukezane T, Zhong M, Joseph T, Frankel P, Foster DA. Journal: Mol Cell Biol; 1999 Nov; 19(11):7672-80. PubMed ID: 10523655. Abstract: Downregulation of protein kinase C delta (PKC delta) by treatment with the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) transforms cells that overexpress the non-receptor class tyrosine kinase c-Src (Z. Lu et al., Mol. Cell. Biol. 17:3418-3428, 1997). We extended these studies to cells overexpressing a receptor class tyrosine kinase, the epidermal growth factor (EGF) receptor (EGFR cells); like c-Src, the EGF receptor is overexpressed in several human tumors. In contrast with expectations, downregulation of PKC isoforms with TPA did not transform the EGFR cells; however, treatment with EGF did transform these cells. Since TPA downregulates all phorbol ester-responsive PKC isoforms, we examined the effects of PKC delta- and PKC alpha-specific inhibitors and the expression of dominant negative mutants for both PKC delta and alpha. Consistent with a tumor-suppressing function for PKC delta, the PKC delta-specific inhibitor rottlerin and a dominant negative PKC delta mutant transformed the EGFR cells in the absence of EGF. In contrast, the PKC alpha-specific inhibitor Go6976 and expression of a dominant negative PKC alpha mutant blocked the transformed phenotype induced by both EGF and PKC delta inhibition. Interestingly, both rottlerin and EGF induced substantial increases in phospholipase D (PLD) activity, which is commonly elevated in response to mitogenic stimuli. The elevation of PLD activity in response to inhibiting PKC delta, like transformation, was dependent upon PKC alpha and restricted to the EGFR cells. These data demonstrate that PKC isoforms alpha and delta have antagonistic effects on both transformation and PLD activity and further support a tumor suppressor role for PKC delta that may be mediated by suppression of tyrosine kinase-dependent increases in PLD activity.[Abstract] [Full Text] [Related] [New Search]