These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tel2p, a regulator of yeast telomeric length in vivo, binds to single-stranded telomeric DNA in vitro.
    Author: Kota RS, Runge KW.
    Journal: Chromosoma; 1999 Sep; 108(5):278-90. PubMed ID: 10525964.
    Abstract:
    The telomeres of the yeast Saccharomyces cerevisiae consist of a duplex region of TG(1-3) repeats that acquire a single-stranded 3' extension of the TG(1-3) strand at the end of S-phase. The length of these repeats is kept within a defined range by regulators such as the TEL2-encoded protein (Tel2p). Here we show that Tel2p can specifically bind to single-stranded TG(1-3). Tel2p binding produced several shifted bands; however, only the slowest migrating band contained Tel2p. Methylation protection and interference experiments as well as gel shift experiments using inosine-containing probes indicated that the faster migrating bands resulted from Tel2p-mediated formation of DNA secondary structures held together by G-G interactions. Tel2p bound to single-stranded substrates that were at least 19 bases in length and contained 14 bases of TG(1-3), and also to double-stranded/single-stranded hybrid substrates with a 3' TG(1-3) overhang. Tel2p binding to a hybrid substrate with a 24 base single-stranded TG(1-3) extension also produced a band characteristic of G-G-mediated secondary structures. These data suggest that Tel2p could regulate telomeric length by binding to the 3' single-stranded TG(1-3) extension present at yeast telomeres.
    [Abstract] [Full Text] [Related] [New Search]