These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Substrate specificity of the periplasmic dipeptide-binding protein from Escherichia coli: experimental basis for the design of peptide prodrugs.
    Author: Smith MW, Tyreman DR, Payne GM, Marshall NJ, Payne JW.
    Journal: Microbiology (Reading); 1999 Oct; 145 ( Pt 10)():2891-901. PubMed ID: 10537211.
    Abstract:
    Pure dipeptide-binding protein (DppA) from Escherichia coli was studied in a filter binding assay to determine its binding specificity. A substrate:DppA stoichiometry of 1:1 was found with both [14C]AlaAla and Ala[14C]Phe. Surprisingly, substrate binding did not vary over the pH range pH 3-9.5. Different dipeptides yielded liganded protein with various pI values, implying that DppA can undergo subtly different conformational changes to accommodate different substrates. Using [125I]Tyr-peptides as substrates in competition assays, the relative binding affinities for a range of dipeptides were found to parallel their overall transport rates into E. coli through the dipeptide permease (Dpp), showing that DppA alone controls the specificity of Dpp. With a series of substituted glycyl peptides, binding affinity was progressively enhanced by alkylation (with methyl to butyl) of the N-terminal alpha-amino group. Thus, results from this approach provide an essential experimental basis, which complements the information from the crystal structure of DppA, for the design of peptidomimetic antibacterials targeted for transport through Dpp.
    [Abstract] [Full Text] [Related] [New Search]