These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A receptor for advanced glycosylation endproducts (AGEs) is colocalized with neurofilament-bound AGEs and SOD1 in motoneurons of ALS: immunohistochemical study.
    Author: Chou SM, Han CY, Wang HS, Vlassara H, Bucala R.
    Journal: J Neurol Sci; 1999 Oct 31; 169(1-2):87-92. PubMed ID: 10540014.
    Abstract:
    Neurofilament (NF)-bound AGEs colocalize immunochemically with SOD1 in the motoneurons of patients with ALS. Among three types of AGE receptors reported in the human brain, AGE-R1 (oligosaccharyltransferase family) and AGE-R2 (substrate of protein kinase C) have been found in neurons, while AGE-R3 is restricted to glia. The present study investigates which of these receptors may be responsible for binding AGEs in the NF conglomerates of motoneurons. Immunostaining of paraffin sections from eight ALS patients (five sporadic and three familial) and three control cases was performed with antibodies directed against R1 and R2, in parallel with those against AGEs and SOD1. The sites of AGE-R1 immunoreactivity (IR) in motoneurons were in conformity to those of NF-associated AGE and SOD1 IRs. By contrast, the IR of R2 was negative in NF conglomerates. Negative R2 IR for NF conglomerates was outlined by surrounding coarse R2 immunopositive granules in the perikaryon. No IR for R1 or R2 was found in hyaline or Bunina inclusions. There was no extraneuronal expression of IR for AGE-R1 or AGEs in microglia or astroglia around the NF accumulation. The colocalization of AGE, AGE-R1, and SOD1 at NF conglomerates in motoneurons supports the notion that AGE-mediated oxidative stress and protein aggregation may be implicated in NF conglomeration and ALS pathogenesis.
    [Abstract] [Full Text] [Related] [New Search]