These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypericum perforatum L. extract does not inhibit 5-HT transporter in rat brain cortex.
    Author: Gobbi M, Valle FD, Ciapparelli C, Diomede L, Morazzoni P, Verotta L, Caccia S, Cervo L, Mennini T.
    Journal: Naunyn Schmiedebergs Arch Pharmacol; 1999 Sep; 360(3):262-9. PubMed ID: 10543427.
    Abstract:
    The hydroalcoholic extract of Hypericum perforatum L. is an effective antidepressant, although its mechanism of action is still unknown. It inhibits the synaptosomal uptake of serotonin (5-HT), dopamine and noradrenaline, suggesting a biochemical mechanism similar to the synthetic standard antidepressants. In the present study, further investigating this hypothesis, we confirmed that a hydromethanolic extract of H. perforatum inhibited [3H]5-HT accumulation in rat brain cortical synaptosomes with an IC50 value of 7.9 microg/ml. The IC50 of pure hyperforin was 1.8 microg/ml, so the activity of the total extract is not related only to its hyperforin content (<5%). This inhibitory effect, however, is not due to a direct interaction with, and blockade of, the 5-HT transporters since the extract, like hyperforin, did not inhibit [3H]citalopram binding (IC50 > 100 microg/ml and 10 microg/ml, respectively). We also found that 3-10 microg/ml of the extract, or 0.3-1 microg/ml hyperforin, induced marked tritium release from superfused synaptosomes previously loaded with [3H]5-HT. The releasing effect of the extract resembles the releasing effect of a reserpine-like compound (Ro 04-1284), i.e. it was slightly delayed and was 5-HT carrier- and calcium-independent. These data suggest that the hydromethanolic extract of H. peforatum, similarly to Ro 04-1284, rapidly depletes storage vesicles, raising the cytoplasmic concentration of 5-HT, and this increase is presumably responsible for the apparent inhibition of [3H]5-HT uptake. Therefore, our in vitro data do not confirm that the hydromethanolic extract of H. perforatum acts as a classical 5-HT uptake inhibitor but indicate reserpine-like properties. However, the concentrations of the active component(s) effective in vitro as reserpine-like agent(s) (i.e. corresponding to > or =3 microg/ml of the hydromethanolic extract) do not seem to be achieved in the brain after pharmacologically effective doses of the extract, as indicated by the finding that there were no significant changes of rat brain 5-HT and 5-hydroxyindoleacetic acid levels after a schedule of treatment (3 x 300 mg/kgday, orally) active in an animal model predictive of antidepressant-like activity. These data also suggest that the antidepressant effect of H. perforatum extracts is unlikely to be associated with interaction with GABA, benzodiazepine and 5-HT1 receptors since, in receptor binding studies, we found IC50 values higher than 5 microg/ml. Therefore other, still unknown, mechanisms are possibly involved in H. perforatum antidepressant effects.
    [Abstract] [Full Text] [Related] [New Search]