These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Satellite cereal yellow dwarf virus-RPV (satRPV) RNA requires a douXble hammerhead for self-cleavage and an alternative structure for replication. Author: Song SI, Silver SL, Aulik MA, Rasochova L, Mohan BR, Miller WA. Journal: J Mol Biol; 1999 Nov 05; 293(4):781-93. PubMed ID: 10543967. Abstract: The 110 nt hammerhead ribozyme in the satellite RNA of cereal yellow dwarf virus-RPV (satRPV RNA) folds into an alternative conformation that inhibits self-cleavage. This alternative structure comprises a pseudoknot with base-pairing between loop (L1) and a single-stranded bulge (L2a), which are located in hammerhead stems I and II, respectively. Mutations that disrupt this base-pairing, or otherwise cause the ribozyme to more closely resemble a canonical hammerhead, greatly increase self-cleavage. In a more natural multimeric sequence context containing the full-length satRPV RNA and two copies of the hammerhead, wild-type RNA cleaves much more efficiently than in the 110 nt context. Mutations in the upstream hammerhead, including a knock-out in the catalytic core, affect cleavage at the downstream cleavage site, indicating that multimers of satRPV RNA cleave via a double hammerhead. The double hammerhead includes base-pairing between two copies of the L1 sequence which extends stem I. Disruption of L1-L1 base-pairing slows cleavage of the multimer. L1-L2a base-pairing is required for efficient replication of satRPV RNA in oat protoplasts. Mutations that affect self-cleavage of the multimer do not correlate with replication efficiency, indicating that the ability to self-cleave is not a primary determinant of replication. We present a replication model in which multimeric satRPV RNA folds into alternative conformations that cannot form in the monomer. One potential metastable intermediate conformation involves L1-L2a base-pairing that may facilitate formation of the double hammerhead. However, we conclude that L1-L2a also performs some other essential function in the satRPV RNA replication cycle, because the L1-L2a base-pairing is more important than efficient self-cleavage for replication.[Abstract] [Full Text] [Related] [New Search]