These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolic fate of glutathione conjugate of benzo[a]pyrene-(7R,8S)-diol (9S,10R)-epoxide in human liver. Author: Srivastava SK, Hu X, Xia H, Awasthi S, Amin S, Singh SV. Journal: Arch Biochem Biophys; 1999 Nov 15; 371(2):340-4. PubMed ID: 10545223. Abstract: Benzo[a]pyrene-(7R,8S)-diol (9S,10R)-epoxide [(+)-anti-BPDE] is believed to be the activated form of the widely spread environmental pollutant benzo[a]pyrene. Glutathione (GSH) S-transferase (GST)-catalyzed conjugation of (+)-anti-BPDE with GSH is an important mechanism in its cellular detoxification. Here, we report that the GSH conjugate of (+)-anti-BPDE [(-)-anti-BPD-SG] is a potent inhibitor (K(i) 15 microM) of class Mu human GST isoenzyme, which, among human liver GSTs, is a highly efficient detoxifier of (+)-anti-BPDE. Thus, the inhibition of GST activity by (-)-anti-BPD-SG may hinder GSH conjugation of (+)-anti-BPDE, unless the conjugate is metabolized and/or eliminated. The results of the present study show that gamma-glutamyltranspeptidase (gamma-GT) can metabolize (-)-anti-BPD-SG at a rate of about 0.29 nmol/min/mg protein. Our studies also show that (-)-anti-BPD-SG is transported across the human canalicular liver plasma membrane (cLPM) in an ATP-dependent manner at a rate of about 0.33 nmol/min/mg protein. The ATP-dependent transport of (-)-anti-[(3)H]BPD-SG across human cLPM follows Michaelis-Menten kinetics (K(m) 84 microM; V(max) 0.33 nmol/min/mg). In conclusion, the results of the present study suggest that both gamma-GT-mediated metabolism and ATP-dependent canalicular transport may be important steps in overall detoxification of (+)-anti-BPDE in the human liver.[Abstract] [Full Text] [Related] [New Search]