These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synaptic response patterns of neurons in the cortex of rat inferior colliculus. Author: Li Y, Evans MS, Faingold CL. Journal: Hear Res; 1999 Nov; 137(1-2):15-28. PubMed ID: 10545630. Abstract: The present study examined synaptic potentials of neurons in inferior colliculus (IC) cortex slice and the roles of GABA and glutamate receptors in generating these potentials. Multipolar (82%) and elongated (18%) cells were observed with intracellular biocytin staining. Electrical stimulation of the IC commissure (CoIC) elicited only inhibitory postsynaptic potentials (IPSPs) (10% of cells), only excitatory postsynaptic potentials (EPSPs) (51%), or both (38%). IPSPs were elicited at lower thresholds and shorter latencies than EPSPs (mean: 1.6+/-1.2 ms) and IPSPs were observed in all neurons following membrane depolarization. Short-latency EPSPs were blocked by non-NMDA receptor antagonists, and longer-latency EPSPs were blocked by NMDA antagonists. CoIC stimulation evoked short-latency IPSPs (mean: 0.55+/-0.33 ms) in 48% of neurons, and the IPSPs persisted despite glutamate receptor blockade, which implies monosynaptic inhibitory input. A GABA(A) antagonist blocked IPSPs and paired pulse inhibition of EPSPs, suggesting GABA(A) receptor mediation. A GABA(B) antagonist reduced paired pulse inhibition of IPSPs, suggesting GABA(B) receptor modulation. Thus, GABA-mediated inhibition plays a critical role in shaping synaptic responses of IC cortex neurons. Normal GABAergic function in IC has been shown to be important in acoustic coding, and reduced efficacy of GABA function in IC neurons is critical in IC pathophysiology in presbycusis, tinnitus and audiogenic seizures.[Abstract] [Full Text] [Related] [New Search]