These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of rat hepatic cytochrome P450 activities by biodegradation products of 4-tert-octylphenol ethoxylate.
    Author: Hanioka N, Jinno H, Chung, Tanaka-Kagawa T, Nishimura T, Ando M.
    Journal: Xenobiotica; 1999 Sep; 29(9):873-83. PubMed ID: 10548448.
    Abstract:
    1. The effects of some biodegradation products of 4-tert-octylphenol ethoxylate (OPEO), namely 4-tert-octylphenol (OP), 4-tert-octylphenol diethoxylate (OP2EO) and 4-tert-octylphenol monocarboxylate (OPIEC) on the kinetics of cytochrome P450 (P450) -dependent monooxygenases in rat liver microsomes have been studied. 2. Testosterone 16beta-hydroxylase (TS16BH), testosterone 2alpha-hydroxylase (TS2AH) and testosterone 6beta-hydroxylase (TS6BH) activities were extensively inhibited by OP at 100 microM (56.0-90.3%). Inhibition was competitive for all P450-dependent monooxygenases. Ki(s) of TS16BH, TS2AH and TS6BH from Lineweaver-Burk plots were 6.37, 3.38 and 34.8 microM respectively. 3. The activities of acetanilide 4-hydroxylase (AA4H), 7-ethoxycoumarin O-deethylase (ECOD) and bufuralol 1'-hydroxylase (BF1'H) were also effectively inhibited by OP at 100 microM (48.6-56.0%). The inhibition of these P450-dependent monooxygenases was non-competitive, and Ki(s) (50.1-63.90 microM) were higher than those of TS16BH, TS2AH and TS6BH. 4. OP2EO also inhibited AA4H, ECOD, TS16BH, TS2AH, BF1'H and TS6BH activities by 38.7-69.3% at 100 microM, although the inhibition rates were slightly lower than those for OP. K(i)s were 14.4-106 microM, and the inhibition was of mixed type (AA4H and ECOD), competitive (TS16BH, TS2AH and TS6BH) and non-competitive (BF1'H). 5. Testosterone 7alpha-hydroxylase (TS7AH), 4-nitrophenol 2-hydroxylase (4NP2H) and lauric acid omega-hydroxylase (LAOH) activities were only slightly affected by OP and OP2EO. 6. The ability of OP1EC to inhibit P450-dependent monooxygenase activities was generally weaker than that of OP and of OP2EO: Ki >200 microM. 7. These results suggest that OPEO biodegradation products interact with constitutive P450 isoforms, CYP1A2, CYP2A2, CYP2B2, CYP2C11 and CYP3A2 in rat liver in vitro (OP > OP2EO > OP1EC), and that the mechanism of this interaction differs depending on the compound and P450 isoform.
    [Abstract] [Full Text] [Related] [New Search]