These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cellular activation by Ca2+ release from stores in the endoplasmic reticulum but not by increased free Ca2+ in the cytosol.
    Author: Strayer DS, Hoek JB, Thomas AP, White MK.
    Journal: Biochem J; 1999 Nov 15; 344 Pt 1(Pt 1):39-46. PubMed ID: 10548531.
    Abstract:
    Ca(2+) release from intracellular stores and/or transmembrane influx can increase the cytosolic free Ca(2+) concentration ([Ca(2+)](i)). Such changes in [Ca(2+)](i) might transduce signals regulating transcription, motility, secretion, and so on. Surfactant secretagogues such as ATP and ionomycin stimulate the release and transmembrane influx of Ca(2+), both of which increase [Ca(2+)](i). The addition of surfactant protein A (SP-A) or depleting cellular Ca(2+) inhibited both surfactant secretion and Ca(2+) transients. Current results suggest that Ca(2+) signalling stimulates surfactant secretion by type II pneumocytes, but not via increased [Ca(2+)](i). Treatment of cells with a Ca(2+) chelator, bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid acetoxymethyl ester (BAPTA-AM), stimulated secretion but decreased [Ca(2+)](i). Adding SP-A or depleting Ca(2+) inhibited BAPTA-AM-induced secretion. When studied directly, Ca(2+) in the endoplasmic reticulum store ([Ca(2+)](l)) decreased in response to BAPTA, ionomycin and thapsigargin, and increased in response to SP-A. Phorbol ester (PMA) induced surfactant secretion without altering [Ca(2+)](i) or [Ca(2+)](l) and was unaffected by Ca(2+) depletion. The addition of PMA to Ca(2+)-releasing secretagogues increased secretion, but combining two Ca(2+)-releasing secretagogues did not. These results suggest that (1) Ca(2+) signalling of type II cell surfactant secretion reflects changes in [Ca(2+)](l), not [Ca(2+)](i), (2) PMA elicits secretion differently from Ca(2+)-releasing secretagogues, and (3) SP-A inhibits secretion by enhancing Ca(2+) sequestration within endoplasmic reticulum stores. Whether other cell types signal via changes in [Ca(2+)](l) is unknown.
    [Abstract] [Full Text] [Related] [New Search]