These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Binding energy and specificity in the catalytic mechanism of yeast aldose reductases.
    Author: Nidetzky B, Mayr P, Hadwiger P, Stütz AE.
    Journal: Biochem J; 1999 Nov 15; 344 Pt 1(Pt 1):101-7. PubMed ID: 10548539.
    Abstract:
    Derivatives of d-xylose and d-glucose, in which the hydroxy groups at C-5, and C-5 and C-6 were replaced by fluorine, hydrogen and azide, were synthesized and used as substrates of the NAD(P)H-dependent aldehyde reduction catalysed by aldose reductases isolated from the yeasts Candida tenuis, C. intermedia and Cryptococcus flavus. Steady-state kinetic analysis showed that, in comparison with the parent aldoses, the derivatives were reduced with up to 3000-fold increased catalytic efficiencies (k(cat)/K(m)), reflecting apparent substrate binding constants (K(m)) decreased to as little as 1/250 and, for d-glucose derivatives, up to 5.5-fold increased maximum initial rates (k(cat)). The effects on K(m) mirror the relative proportion of free aldehyde that is available in aqueous solution for binding to the binary complex enzyme-NAD(P)H. The effects on k(cat) reflect non-productive binding of the pyranose ring of sugars; this occurs preferentially with the NADPH-dependent enzymes. No transition-state stabilization energy seems to be derived from hydrogen-bonding interactions between enzyme-NAD(P)H and positions C-5 and C-6 of the aldose. In contrast, unfavourable interactions with the C-6 group are used together with non-productive binding to bring about specificity (6-10 kJ/mol) in a series of d-aldoses and to prevent the reaction with poor substrates such as d-glucose. Azide introduced at C-5 or C-6 destabilizes the transition state of reduction of the corresponding hydrogen-substituted aldoses by approx. 4-9 kJ/mol. The total transition state stabilization energy derived from hydrogen bonds between hydroxy groups of the substrate and enzyme-NAD(P)H is similar for all yeast aldose reductases (yALRs), at approx. 12-17 kJ/mol. Three out of four yALRs manage on only hydrophobic enzyme-substrate interactions to achieve optimal k(cat), whereas the NAD(P)H-dependent enzyme from C. intermedia requires additional, probably hydrogen-bonding, interactions with the substrate for efficient turnover.
    [Abstract] [Full Text] [Related] [New Search]