These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inositol phosphates influence iron uptake in Caco-2 cells. Author: Skoglund E, Lönnerdal B, Sandberg AS. Journal: J Agric Food Chem; 1999 Mar; 47(3):1109-13. PubMed ID: 10552423. Abstract: Phytate, inositol hexaphosphate (InsP(6)), may be hydrolyzed to inositol phosphates with lower degree of phosphorylation, i.e., inositol penta- to monophosphates (InsP(5)-InsP(1)), during food processing. Each of these lower inositol phosphates exists in different isomeric forms. The objective of this study was to determine if different isomers of InsP(3)-InsP(5) (Ins(1,2,4)P(3), Ins(1,2,3)P(3), Ins(1,2,6)P(3), Ins(1,3,4)P(3), Ins(1,2,3,4)P(4), Ins(1,2,5,6)P(4), Ins(1,2,4,5,6)P(5), and Ins(1,3,4,5,6)P(5)) and InsP(6) affect the uptake of iron. We studied the iron absorption in vitro using the human intestinal epithelial cell line, Caco-2. Addition of a 2-fold molar excess of InsP(6) or InsP(5) in proportion to Fe (1 h incubation at 37 degrees C) reduced iron uptake by 46-52% (p < 0.001). Neither InsP(4) isomers nor InsP(3) isomers affected iron uptake significantly at 1 h incubation with a molar InsP:Fe level of 2:1. Iron uptake was shown to not be a function of the isomeric form of inositol phosphates. The inositol phosphate isomers did not seem likely to interact with each other through iron to form more stable iron complexes. At a molar InsP:Fe level of 20:1 an inhibitory effect of InsP(4) was found, while InsP(3) did not affect the iron absorption even at a 20-fold molar excess.[Abstract] [Full Text] [Related] [New Search]