These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of pH and the gel state on the mechanical properties, moisture contents, and glass transition temperatures of whey protein films. Author: Anker M, Stading M, Hermansson AM. Journal: J Agric Food Chem; 1999 May; 47(5):1878-86. PubMed ID: 10552465. Abstract: The mechanical properties, moisture contents (MC), and glass transition temperature (T(g)) of whey protein isolate (WPI) films were studied at various pH values using sorbitol (S) as a plasticizer. The films were cast from heated aqueous solutions and dried in a climate chamber at 23 degrees C and 50% relative humidity (RH) for 16 h. The critical gel concentrations (c(g)) for the cooled aqueous solutions were found to be 11.7, 12.1, and 11.3% (w/w) WPI for pH 7, 8, and 9, respectively. The cooling rate influenced the c(g), in that a lower amount of WPI was needed for gelation when a slower cooling rate was applied. Both cooling rates used in this study showed a maximum in the c(g) at pH 8. The influence of the polymer network on the film properties was elucidated by varying the concentration of WPI over and under the c(g). Strain at break (epsilon(b)) showed a maximum at the c(g) for all pH values, thus implying that the most favorable structure regarding the ability of the films to stretch is formed at this concentration. Young's modulus (E) and stress at break (sigma(b)) showed a maximum at c(g) for pH 7 and 8. The MC and epsilon(b) increased when pH increased from 7 to 9, whereas T(g) decreased. Hence, T(g) values were -17, -18, and -21 degrees C for pH 7, 8, and 9, respectively. E and sigma(b) decreased and epsilon(b) and thickness increased when the surrounding RH increased. The thickness of the WPI films also increased with the concentration of WPI.[Abstract] [Full Text] [Related] [New Search]