These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: GH regulates secretory activity and apoptosis in cultured bovine granulosa cells through the activation of the cAMP/protein kinase A system.
    Author: Sirotkin AV, Makarevich AV.
    Journal: J Endocrinol; 1999 Nov; 163(2):317-27. PubMed ID: 10556782.
    Abstract:
    We have studied the action of GH on the production of hormones, growth factors, growth factor-binding protein and the occurrence of apoptosis in bovine ovarian granulosa cells, as well as the role of cAMP-stimulated protein kinase A (PKA) in the mediation of these effects. For this purpose we investigated the effects of exogenous bovine GH (0.001-10 microgram/ml), PKA blockers KT5720 (100 ng/ml) and adenosine-3',5'-monophosphothiodate (Rp-cAMPS) (1 micromol), alone and in combination, on IGF-I, IGF-binding protein (IGFBP)-3, oxytocin, progesterone and estradiol secretion, cAMP and PKA content and the occurrence of apoptosis. The secretion of hormones, IGF-I and IGFBP-3 into the culture medium was measured using RIA/IRMA. The presence of PKA was detected using immunocytochemistry and Western immunoblotting. The presence of cAMP in cells was demonstrated using immunocytochemistry, whilst the proportion of apoptotic cells was determined by the TUNEL method. It was found that the addition of GH to the culture medium strongly (P<0.05) stimulated IGF-I (at a concentration of 0.001-10 microgram GH/ml medium), IGFBP-3 (0.001-1 microgram GH/ml) and oxytocin (0.01-10 microgram GH/ml) secretion. Low concentrations (1-100 ng/ml) of GH stimulated, whilst a higher concentration (10 microgram/ml) inhibited estradiol output. GH slightly (P<0.05) inhibited progesterone (1-100 ng GH/ml) secretion and significantly (P<0.05) decreased the incidence of apoptosis (0.01-1 microgram GH/ml) in cultured cells. The addition of GH (100 ng/ml) caused a dramatic (P<0.05) increase in the proportion of cells possessing the immunoreactive catalytic subunit of PKA and a slight decrease in the proportion of cells containing the regulatory PKA subunit.PKA blockers KT5720 and Rp-cAMPS significantly (P<0.05) reduced the proportion of granulosa cells containing cAMP, and the catalytic and (in the case of KT5720) regulatory subunits of PKA. KT5720 given alone significantly (P<0.05) inhibited the secretion of IGFBP-3, but not that of IGF-I or progesterone. Rp-cAMPS decreased (P<0.05) the secretion of oxytocin but not that of estradiol output or the occurrence of apoptosis. KT5720 and Rp-cAMPS fully or partially prevented the GH effect on IGF-I, IGFBP-3, oxytocin, progesterone, estradiol and apoptosis. These observations suggest the involvement of GH and a cAMP/PKA-dependent intracellular cascade in the control of IGF-I, IGFBP-3, oxytocin, progesterone, estradiol, cAMP and apoptosis in bovine ovarian granulosa cells. The stimulation of PKA by GH and the prevention of GH-induced effects by PKA blockers suggest that the observed GH effects on bovine ovarian cells are probably mediated by the cAMP/PKA system.
    [Abstract] [Full Text] [Related] [New Search]