These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of Smad7 promoter by direct association with Smad3 and Smad4.
    Author: Nagarajan RP, Zhang J, Li W, Chen Y.
    Journal: J Biol Chem; 1999 Nov 19; 274(47):33412-8. PubMed ID: 10559222.
    Abstract:
    Smad7 is a regulatory Smad protein that is able to antagonize signal transduction by transforming growth factor-beta (TGF-beta) and activin receptors. To characterize the regulation of Smad7 at the transcriptional level, we isolated the promoter region of the mouse Smad7 gene. When the Smad7 promoter luciferase reporter gene (-408 and +112 bp) was expressed in human hepatoma (HepG2) cells, its transcriptional activity was increased following TGF-beta or activin treatment. In addition, this region of the Smad7 promoter was stimulated by ectopic expression of Smad3 as well as constitutively active TGF-beta and activin receptors, indicating that Smad7 transcription was modulated by the signaling downstream those two receptors. A gel mobility shift assay indicated that a DNA fragment spanning -408 to -126 base pairs (bp) was able to directly bind purified Smad4. Furthermore, a consensus Smad3-Smad4 binding element (SBE) was discovered in this region of the promoter with a palindromic sequence of GTCTAGAC. A 33-bp Smad7 promoter fragment containing this SBE was able to bind Smad3 and Smad4. In human embryonic kidney 293 cells, the expression of constitutively active TGF-beta type I receptor was able to induce the formation of a Smad3- and Smad4-containing nuclear protein complex that bound the SBE. In HepG2 cells, TGF-beta1 treatment could induce the formation of an endogenous SBE-binding complex. Taken together, these data provided the first evidence that Smad7 transcription is regulated by TGF-beta and activin signaling through direct binding of Smad3 and Smad4 to the Smad7 promoter.
    [Abstract] [Full Text] [Related] [New Search]