These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of acute and chronic exercise on vasoconstrictor responsiveness of rat abdominal aorta.
    Author: Spier SA, Laughlin MH, Delp MD.
    Journal: J Appl Physiol (1985); 1999 Nov; 87(5):1752-7. PubMed ID: 10562619.
    Abstract:
    Reductions in blood pressure that are associated with exercise training have been hypothesized to be the result of a sustained postexertional vascular alteration following single bouts of exercise. The purpose of this study was to determine whether a decrease in vascular sensitivity to vasoconstrictor agonists occurs after a single bout of exercise and whether this vascular alteration is sustained through various periods of exercise training. Vascular responses of abdominal aortic rings to norepinephrine (NE; 10(-9)-10(-4) M) were determined in vitro. Aortas were isolated from sedentary rats immediately after rats performed a single bout of treadmill exercise (30 m/min for 1 h); 24 h after the last exercise bout in rats exercised for 1 day; and 1, 2, 4, and 10 wk of training at 30 m/min, 60 min, 5 days/wk. Sensitivity to NE was only diminished after 10 wk of training. This diminished vascular sensitivity to NE was abolished with the removal of the endothelial cell layer. Furthermore, there were no reductions in developed tension or vascular sensitivity to the vasoconstrictor agonists KCl (10-100 mM), phenylephrine (10(-8)-10(-4) M), and arginine vasopressin (10(-9)-10(-5) M) in vessels either with or without the endothelial layer after a single bout of exercise. These data indicate that a single bout of exercise does not diminish aortic responsiveness to vasoconstrictor agonists and thus is not responsible for the diminished contractile responsiveness that occurs between 4 and 10 wk of moderate-intensity exercise training in rats. This vascular adaptation to exercise training appears to be mediated through an endothelium-dependent mechanism.
    [Abstract] [Full Text] [Related] [New Search]