These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interleukin-11 attenuates pulmonary inflammation and vasomotor dysfunction in endotoxin-induced lung injury. Author: Sheridan BC, Dinarello CA, Meldrum DR, Fullerton DA, Selzman CH, McIntyre RC. Journal: Am J Physiol; 1999 Nov; 277(5):L861-7. PubMed ID: 10564168. Abstract: Interleukin (IL)-11, like other members of the gp130 receptor class, possesses anti-inflammatory properties. We hypothesized that IL-11 pretreatment would attenuate endotoxin [lipopolysaccharide (LPS)]-induced lung inflammation and diminish injury to endothelium-dependent and -independent mechanisms of pulmonary vasorelaxation that require cGMP in Sprague-Dawley rats. LPS (20 mg/kg ip) increased lung tumor necrosis factor (TNF)-alpha compared with the saline control (0.7 +/- 0.15 ng/g lung wet wt for control vs. 3.5 +/- 0.09 ng/g lung wet wt for LPS; P < 0.05). IL-11 (200 mg/kg ip) injected 10 min before LPS administration attenuated the LPS-induced lung TNF-alpha levels (1.6 +/- 0.91 ng/g lung wet wt; P < 0.05 vs. LPS). IL-11 also diminished LPS-induced lung neutrophil sequestration as assessed by myeloperoxidase units (2.1 +/- 0.25 U/g lung wet wt for saline and 15.6 +/- 2.02 U/g lung wet wt for LPS vs. 7.07 +/- 1.65 U/g lung wet wt for LPS plus IL-11; P < 0.05). Similarly, TNF-alpha binding protein (175 mg/kg) attenuated LPS-induced myeloperoxidase activity (6.04 +/- 0.14 U/g lung wet wt; P < 0.05). Both IL-11 and TNF-alpha binding protein similarly attenuated LPS-induced endothelium-dependent vasomotor dysfunction with improved relaxation responses to 10(-7) and 10(-6) M acetylcholine and A-23187 in phenylephrine-preconstricted isolated pulmonary artery rings (P < 0.05 vs. LPS). Endothelium-independent relaxation responses to sodium nitroprusside were also improved after LPS at 10(-6) M (P < 0.05 vs. LPS). Moreover, IL-11 decreased endotoxin-induced mortality in CF1 mice from 90 to 50% (P </= 0.05 vs. LPS). Therefore, IL-11 prevents LPS-induced lung TNF-alpha production, neutrophil sequestration, and pulmonary vasomotor dysfunction. We conclude that IL-11 possesses anti-inflammatory activity that protects against LPS-induced lung injury and lethality.[Abstract] [Full Text] [Related] [New Search]