These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reduction of 5-hydroxytryptamine (5-HT)(1A)-mediated temperature and neuroendocrine responses and 5-HT(1A) binding sites in 5-HT transporter knockout mice. Author: Li Q, Wichems C, Heils A, Van De Kar LD, Lesch KP, Murphy DL. Journal: J Pharmacol Exp Ther; 1999 Dec; 291(3):999-1007. PubMed ID: 10565817. Abstract: The aim of the present study was to determine whether alterations in 5-hydroxytryptamine (5-HT)(1A) receptors would be found in knockout mice lacking the serotonin transporter (5-HTT). Hypothermic and neuroendocrine responses to the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT) were used to examine the function of 5-HT(1A) receptors. Initial studies evaluated the dose-response and time course of 8-OH-DPAT-induced hypothermia and hormone secretion in normal CD-1 mice (the background strain of the 5-HTT knockout mice). 8-OH-DPAT dose-dependently produced hypothermic responses that peaked at 20 min postinjection. 8-OH-DPAT-induced hypothermia was blocked by the 5-HT(1A) antagonist WAY-100635. 8-OH-DPAT dose-dependently increased the concentrations of plasma oxytocin, corticotropin, and corticosterone. In the 5-HTT knockout (-/-) mice, the hypothermic response to 8-OH-DPAT (0.1 mg/kg s.c.) was completely abolished. Furthermore, 5-HTT-/- mice had significantly attenuated plasma oxytocin and corticosterone responses to 8-OH-DPAT. No significant changes in the hypothermic or hormonal responses to 8-OH-DPAT were observed in heterozygous (5-HTT+/-) mice. [(3)H]8-OH-DPAT- and [(125)I]MPPI [4-(2'-methoxyphenyl)-1-[2'-[N-(2"-pyridinyl)-iodobenzamido]ethyl] pip erazine]-binding sites in the hypothalamus and [(125)I]MPPI-binding sites in the dorsal raphe were significantly decreased in 5-HTT-/- mice. The results indicate that lack of the 5-HTT is associated with a functional desensitization of 5-HT(1A) receptor responses to 8-OH-DPAT, which may be a consequence, at least in part, of the decrease in density of 5-HT(1A) receptors in the hypothalamus and dorsal raphe of 5-HTT-/- mice.[Abstract] [Full Text] [Related] [New Search]