These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin. Author: Browne KA, Blink E, Sutton VR, Froelich CJ, Jans DA, Trapani JA. Journal: Mol Cell Biol; 1999 Dec; 19(12):8604-15. PubMed ID: 10567584. Abstract: Granule-mediated cell killing by cytotoxic lymphocytes requires the combined actions of a membranolytic protein, perforin, and granule-associated granzymes, but the mechanism by which they jointly kill cells is poorly understood. We have tested a series of membrane-disruptive agents including bacterial pore-forming toxins and hemolytic complement for their ability to replace perforin in facilitating granzyme B-mediated cell death. As with perforin, low concentrations of streptolysin O and pneumolysin (causing <10% (51)Cr release) permitted granzyme B-dependent apoptosis of Jurkat and Yac-1 cells, but staphylococcal alpha-toxin and complement were ineffective, regardless of concentration. The ensuing nuclear apoptotic damage was caspase dependent and included cleavage of poly(ADP-ribose) polymerase, suggesting a mode of action similar to that of perforin. The plasma membrane lesions formed at low dose by perforin, pneumolysin, and streptolysin did not permit diffusion of fluorescein-labeled proteins as small as 8 kDa into the cell, indicating that large membrane defects are not necessary for granzymes (32 to 65 kDa) to enter the cytosol and induce apoptosis. The endosomolytic toxin, listeriolysin O, also effected granzyme B-mediated cell death at concentrations which produced no appreciable cell membrane damage. Cells pretreated with inhibitors of endosomal trafficking such as brefeldin A took up granzyme B normally but demonstrated seriously impaired nuclear targeting of granzyme B when perforin was also added, indicating that an important role of perforin is to disrupt vesicular protein trafficking. Surprisingly, cells exposed to granzyme B with perforin concentrations that produced nearly maximal (51)Cr release (1,600 U/ml) also underwent apoptosis despite excluding a 8-kDa fluorescein-labeled protein marker. Only at concentrations of >4,000 U/ml were perforin pores demonstrably large enough to account for transmembrane diffusion of granzyme B. We conclude that pore formation may allow granzyme B direct cytosolic access only when perforin is delivered at very high concentrations, while perforin's ability to disrupt endosomal trafficking may be crucial when it is present at lower concentrations or in killing cells that efficiently repair perforin pores.[Abstract] [Full Text] [Related] [New Search]