These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of signaling through the B cell antigen receptor by the protooncogene product, c-Cbl, requires Syk tyrosine 317 and the c-Cbl phosphotyrosine-binding domain. Author: Yankee TM, Keshvara LM, Sawasdikosol S, Harrison ML, Geahlen RL. Journal: J Immunol; 1999 Dec 01; 163(11):5827-35. PubMed ID: 10570266. Abstract: The Syk protein-tyrosine kinase couples the B cell Ag receptor (BCR) to intracellular biochemical pathways. Syk becomes phosphorylated on multiple tyrosine residues upon receptor cross-linking. Tyrosine 317 is a site of phosphorylation located within the linker region of Syk that separates the amino-terminal, tandem pair of SH2 domains from the carboxyl-terminal catalytic domain. The amino acid sequence surrounding phosphotyrosine 317 matches the consensus sequence for recognition by the phosphotyrosine-binding (PTB) domain of the protooncogene product, c-Cbl. The overexpression of c-Cbl in DT40 B cells inhibits Ag receptor-mediated activation of the NF-AT transcription factor. The ability of overexpressed c-Cbl to inhibit signaling requires both Syk tyrosine 317 and a functional c-Cbl PTB domain. Mutant forms of Syk lacking tyrosine 317 exhibit an enhanced ability to couple the BCR to pathways leading to the activation of both NF-AT and Elk-1. Coimmunoprecipitation experiments indicate that Syk phosphotyrosine 317 and the c-Cbl PTB domain enhance, but are not required for, all interactions between these two proteins. In unstimulated cells, c-Cbl and Syk can be isolated in a complex that also contains tubulin. A mutant form of Syk lacking tyrosine at position 317 exhibits an enhanced ability to interact with a diphosphopeptide modeled on the immunoreceptor tyrosine-based activation motif of the CD79a component of the Ag receptor. These studies indicate that c-Cbl may contribute to the regulation of BCR signaling by modulating the ability of Syk to associate with the BCR and couple the receptor to intracellular signaling pathways.[Abstract] [Full Text] [Related] [New Search]